skip to Main Content

Super Low-cost Smartphone Attachment Brings Blood Pressure Monitoring to Your Fingertips

Super Low-cost Smartphone Attachment Brings Blood Pressure Monitoring to Your Fingertips

Super Low-cost Smartphone Attachment Brings Blood Pressure Monitoring to Your Fingertips

Super Low-cost Smartphone Attachment Brings Blood Pressure Monitoring to Your Fingertips

Two hands hold a black smartphone against a white background.

Engineers at the University of California San Diego have developed a simple, low-cost clip that uses a smartphone’s camera and flash to monitor blood pressure at the user’s fingertip. The clip works with a custom smartphone app and currently costs about 80 cents to make. The researchers estimate that the cost could be as low as 10 cents apiece when manufactured at scale.

The technology was published May 29 in Scientific Reports.

Researchers say it could help make regular blood pressure monitoring easy, affordable and accessible to people in resource-poor communities. It could benefit older adults and pregnant women, for example, in managing conditions such as hypertension.

“We’ve created an inexpensive solution to lower the barrier to blood pressure monitoring,” said study first author Yinan (Tom) Xuan, an electrical and computer engineering Ph.D. student at UC San Diego.

Man in a light gray sweater sits at a desk while holding a smartphone.
Edward Wang

“Because of their low cost, these clips could be handed out to anyone who needs them but cannot go to a clinic regularly,” said study senior author Edward Wang, a professor of electrical and computer engineering at UC San Diego and director of the Digital Health Lab. “A blood pressure monitoring clip could be given to you at your checkup, much like how you get a pack of floss and toothbrush at your dental visit.”

Another key advantage of the clip is that it does not need to be calibrated to a cuff.

“This is what distinguishes our device from other blood pressure monitors,” said Wang. Other cuffless systems being developed for smartwatches and smartphones, he explained, require obtaining a separate set of measurements with a cuff so that their models can be tuned to fit these measurements.

“Our is a calibration-free system, meaning you can just use our device without touching another blood pressure monitor to get a trustworthy blood pressure reading.”

To measure blood pressure, the user simply presses on the clip with a fingertip. A custom smartphone app guides the user on how hard and long to press during the measurement.

Black smartphone with a black plastic clip attached to one corner.

The clip is a 3D-printed plastic attachment that fits over a smartphone’s camera and flash. It features an optical design similar to that of a pinhole camera. When the user presses on the clip, the smartphone’s flash lights up the fingertip. That light is then projected through a pinhole-sized channel to the camera as an image of a red circle. A spring inside the clip allows the user to press with different levels of force. The harder the user presses, the bigger the red circle appears on the camera.

The smartphone app extracts two main pieces of information from the red circle. By looking at the size of the circle, the app can measure the amount of pressure that the user’s fingertip applies. And by looking at the brightness of the circle, the app can measure the volume of blood going in and out of the fingertip. An algorithm converts this information into systolic and diastolic blood pressure readings.

Two hands hold a black smartphone against a white background.
A custom smartphone app guides the user on how hard and long to press during a blood pressure measurement.

The researchers tested the clip on 24 volunteers from the UC San Diego Medical Center. Results were comparable to those taken by a blood pressure cuff.

“Using a standard blood pressure cuff can be awkward to put on correctly, and this solution has the potential to make it easier for older adults to self-monitor blood pressure,” said study co-author and medical collaborator Alison Moore, chief of the Division of Geriatrics in the Department of Medicine at UC San Diego School of Medicine.

While the team has only proven the solution on a single smartphone model, the clip’s current design theoretically should work on other phone models, said Xuan.

Wang and one of his lab members, Colin Barry, a co-author on the paper who is an electrical and computer engineering student at UC San Diego, co-founded a company, Billion Labs Inc., to refine and commercialize the technology.

Next steps include making the technology more user friendly, especially for older adults; testing its accuracy across different skin tones; and creating a more universal design.

Paper: “Ultra-low-cost Mechanical Smartphone Attachment for No-Calibration Blood Pressure Measurement.” Co-authors include Jessica De Souza, Jessica Wen and Nick Antipa, all at UC San Diego.

This work is supported by MassAITC (a program funded by the National Institute on Aging of the National Institutes of Health under award number P30AG073107), the Altman Clinical and Translational Research Institute Galvanizing Engineering in Medicine (GEM) Awards, and a Google Research Scholar Award.

Disclosures: Edward Wang and Colin Barry are co-founders of and have a financial interest in Billion Labs Inc. Wang is also the CEO of Billion Labs Inc. The other authors declare that they have no competing interests. The terms of this arrangement have been reviewed and approved by the University of California San Diego in accordance with its conflict-of-interest policies.

 

As retrieved: https://today.ucsd.edu/story/super-low-cost-smartphone-attachment-brings-blood-pressure-monitoring-to-your-fingertips

Super Low-cost Smartphone Attachment Brings Blood Pressure Monitoring to Your Fingertips

Two hands hold a black smartphone against a white background.

Engineers at the University of California San Diego have developed a simple, low-cost clip that uses a smartphone’s camera and flash to monitor blood pressure at the user’s fingertip. The clip works with a custom smartphone app and currently costs about 80 cents to make. The researchers estimate that the cost could be as low as 10 cents apiece when manufactured at scale.

The technology was published May 29 in Scientific Reports.

Researchers say it could help make regular blood pressure monitoring easy, affordable and accessible to people in resource-poor communities. It could benefit older adults and pregnant women, for example, in managing conditions such as hypertension.

“We’ve created an inexpensive solution to lower the barrier to blood pressure monitoring,” said study first author Yinan (Tom) Xuan, an electrical and computer engineering Ph.D. student at UC San Diego.

Man in a light gray sweater sits at a desk while holding a smartphone.
Edward Wang

“Because of their low cost, these clips could be handed out to anyone who needs them but cannot go to a clinic regularly,” said study senior author Edward Wang, a professor of electrical and computer engineering at UC San Diego and director of the Digital Health Lab. “A blood pressure monitoring clip could be given to you at your checkup, much like how you get a pack of floss and toothbrush at your dental visit.”

Another key advantage of the clip is that it does not need to be calibrated to a cuff.

“This is what distinguishes our device from other blood pressure monitors,” said Wang. Other cuffless systems being developed for smartwatches and smartphones, he explained, require obtaining a separate set of measurements with a cuff so that their models can be tuned to fit these measurements.

“Our is a calibration-free system, meaning you can just use our device without touching another blood pressure monitor to get a trustworthy blood pressure reading.”

To measure blood pressure, the user simply presses on the clip with a fingertip. A custom smartphone app guides the user on how hard and long to press during the measurement.

Black smartphone with a black plastic clip attached to one corner.

The clip is a 3D-printed plastic attachment that fits over a smartphone’s camera and flash. It features an optical design similar to that of a pinhole camera. When the user presses on the clip, the smartphone’s flash lights up the fingertip. That light is then projected through a pinhole-sized channel to the camera as an image of a red circle. A spring inside the clip allows the user to press with different levels of force. The harder the user presses, the bigger the red circle appears on the camera.

The smartphone app extracts two main pieces of information from the red circle. By looking at the size of the circle, the app can measure the amount of pressure that the user’s fingertip applies. And by looking at the brightness of the circle, the app can measure the volume of blood going in and out of the fingertip. An algorithm converts this information into systolic and diastolic blood pressure readings.

Two hands hold a black smartphone against a white background.
A custom smartphone app guides the user on how hard and long to press during a blood pressure measurement.

The researchers tested the clip on 24 volunteers from the UC San Diego Medical Center. Results were comparable to those taken by a blood pressure cuff.

“Using a standard blood pressure cuff can be awkward to put on correctly, and this solution has the potential to make it easier for older adults to self-monitor blood pressure,” said study co-author and medical collaborator Alison Moore, chief of the Division of Geriatrics in the Department of Medicine at UC San Diego School of Medicine.

While the team has only proven the solution on a single smartphone model, the clip’s current design theoretically should work on other phone models, said Xuan.

Wang and one of his lab members, Colin Barry, a co-author on the paper who is an electrical and computer engineering student at UC San Diego, co-founded a company, Billion Labs Inc., to refine and commercialize the technology.

Next steps include making the technology more user friendly, especially for older adults; testing its accuracy across different skin tones; and creating a more universal design.

Paper: “Ultra-low-cost Mechanical Smartphone Attachment for No-Calibration Blood Pressure Measurement.” Co-authors include Jessica De Souza, Jessica Wen and Nick Antipa, all at UC San Diego.

This work is supported by MassAITC (a program funded by the National Institute on Aging of the National Institutes of Health under award number P30AG073107), the Altman Clinical and Translational Research Institute Galvanizing Engineering in Medicine (GEM) Awards, and a Google Research Scholar Award.

Disclosures: Edward Wang and Colin Barry are co-founders of and have a financial interest in Billion Labs Inc. Wang is also the CEO of Billion Labs Inc. The other authors declare that they have no competing interests. The terms of this arrangement have been reviewed and approved by the University of California San Diego in accordance with its conflict-of-interest policies.

 

As retrieved: https://today.ucsd.edu/story/super-low-cost-smartphone-attachment-brings-blood-pressure-monitoring-to-your-fingertips

Super Low-cost Smartphone Attachment Brings Blood Pressure Monitoring to Your Fingertips

Two hands hold a black smartphone against a white background.

Engineers at the University of California San Diego have developed a simple, low-cost clip that uses a smartphone’s camera and flash to monitor blood pressure at the user’s fingertip. The clip works with a custom smartphone app and currently costs about 80 cents to make. The researchers estimate that the cost could be as low as 10 cents apiece when manufactured at scale.

The technology was published May 29 in Scientific Reports.

Researchers say it could help make regular blood pressure monitoring easy, affordable and accessible to people in resource-poor communities. It could benefit older adults and pregnant women, for example, in managing conditions such as hypertension.

“We’ve created an inexpensive solution to lower the barrier to blood pressure monitoring,” said study first author Yinan (Tom) Xuan, an electrical and computer engineering Ph.D. student at UC San Diego.

Man in a light gray sweater sits at a desk while holding a smartphone.
Edward Wang

“Because of their low cost, these clips could be handed out to anyone who needs them but cannot go to a clinic regularly,” said study senior author Edward Wang, a professor of electrical and computer engineering at UC San Diego and director of the Digital Health Lab. “A blood pressure monitoring clip could be given to you at your checkup, much like how you get a pack of floss and toothbrush at your dental visit.”

Another key advantage of the clip is that it does not need to be calibrated to a cuff.

“This is what distinguishes our device from other blood pressure monitors,” said Wang. Other cuffless systems being developed for smartwatches and smartphones, he explained, require obtaining a separate set of measurements with a cuff so that their models can be tuned to fit these measurements.

“Our is a calibration-free system, meaning you can just use our device without touching another blood pressure monitor to get a trustworthy blood pressure reading.”

To measure blood pressure, the user simply presses on the clip with a fingertip. A custom smartphone app guides the user on how hard and long to press during the measurement.

Black smartphone with a black plastic clip attached to one corner.

The clip is a 3D-printed plastic attachment that fits over a smartphone’s camera and flash. It features an optical design similar to that of a pinhole camera. When the user presses on the clip, the smartphone’s flash lights up the fingertip. That light is then projected through a pinhole-sized channel to the camera as an image of a red circle. A spring inside the clip allows the user to press with different levels of force. The harder the user presses, the bigger the red circle appears on the camera.

The smartphone app extracts two main pieces of information from the red circle. By looking at the size of the circle, the app can measure the amount of pressure that the user’s fingertip applies. And by looking at the brightness of the circle, the app can measure the volume of blood going in and out of the fingertip. An algorithm converts this information into systolic and diastolic blood pressure readings.

Two hands hold a black smartphone against a white background.
A custom smartphone app guides the user on how hard and long to press during a blood pressure measurement.

The researchers tested the clip on 24 volunteers from the UC San Diego Medical Center. Results were comparable to those taken by a blood pressure cuff.

“Using a standard blood pressure cuff can be awkward to put on correctly, and this solution has the potential to make it easier for older adults to self-monitor blood pressure,” said study co-author and medical collaborator Alison Moore, chief of the Division of Geriatrics in the Department of Medicine at UC San Diego School of Medicine.

While the team has only proven the solution on a single smartphone model, the clip’s current design theoretically should work on other phone models, said Xuan.

Wang and one of his lab members, Colin Barry, a co-author on the paper who is an electrical and computer engineering student at UC San Diego, co-founded a company, Billion Labs Inc., to refine and commercialize the technology.

Next steps include making the technology more user friendly, especially for older adults; testing its accuracy across different skin tones; and creating a more universal design.

Paper: “Ultra-low-cost Mechanical Smartphone Attachment for No-Calibration Blood Pressure Measurement.” Co-authors include Jessica De Souza, Jessica Wen and Nick Antipa, all at UC San Diego.

This work is supported by MassAITC (a program funded by the National Institute on Aging of the National Institutes of Health under award number P30AG073107), the Altman Clinical and Translational Research Institute Galvanizing Engineering in Medicine (GEM) Awards, and a Google Research Scholar Award.

Disclosures: Edward Wang and Colin Barry are co-founders of and have a financial interest in Billion Labs Inc. Wang is also the CEO of Billion Labs Inc. The other authors declare that they have no competing interests. The terms of this arrangement have been reviewed and approved by the University of California San Diego in accordance with its conflict-of-interest policies.

 

As retrieved: https://today.ucsd.edu/story/super-low-cost-smartphone-attachment-brings-blood-pressure-monitoring-to-your-fingertips

Read Next

Design Lab Uc San Diego Ailie Fraser Tricia Ngoon

CHI 2018 Conference Spotlights Design Lab Work

This year’s ACM CHI Conference on Human Factors in Computing Systems — more commonly known…

Smart Streetlights Data San Diego

San Diegans Shouldn’t Be Lab Rats for Innovation

Voice of San Diego Editorial by Design Lab Faculty Lilly Irani

In 2016, San Diego installed thousands of General Electric cameras, microphones and telecommunication devices on streetlights around the city. The City Council approved the project with little investigation, looking no further than the city’s casting of the project as environmental “sensors” and “nodes” that would analyze traffic and the atmosphere.

The city finally held town halls this year to explain the program to communities, but by then it was too late. Once installed, technologies of this type will outrun the uses for which they are designed and publicly justified. Over and over, researchers like myself have seen data creep — like mission creep — take hold as companies try to add value to data and monetize them.
Olga McConnell

Olga McConnell, Project Specialist and Executive Assistant to the Director of The Design Lab

As the Executive Assistant to the Director of The Design Lab, a project manager for the Lab’s special projects and annual events, and a lifelong learner who holds a M.A. in English Linguistics and Translation, and a M.B.A. in Business Administration and Management, Olga McConnell’s zest for knowledge is palpable. She is currently on track to complete a Project Management Certification at UC San Diego Extension at the end of 2021, and she is planning on obtaining her Project Management Professional (PMP) Certification after that. “I’m kind of addicted to getting degrees,” jokes McConnell. “I even thought the other day, maybe I’ll go to law school. And then I was like, no, enough, enough.” 

For nearly five years, McConnell was Executive Assistant to Don Norman, the Founding Director Emeritus of The Design Lab. She is now the Executive Assistant to the new Director of The Design Lab, Mai Thi Nguyen. It is Nguyen’s vision of human-technology-community interactions, along with her JEDI (justice, diversity, equity and inclusion) approach that has McConnell excited about this new chapter in the Lab’s legacy, saying, “I see how great she is as an efficient leader, so I’m really looking forward to working with her, supporting her administratively, as well as taking charge of certain projects that she has in mind.”

San Diego Regional EDC teams up with Design Lab on Link2 Project

Kate Gallagher with the San Diego Economic Development Corporation (EDC) needed a website redesign for…

Be on your best behavior: San Diego is being judged this week

By Phillip Molnar, San Diego Union Tribune

San Diego and Tijuana are throwing a party for just one man this week, and you’ve probably never heard his name.

Montreal native Bertrand Derome, managing director of the World Design Organization, is getting the red carpet treatment across two nations as the cities vie for the title of World Design Capital.

The award means a global spotlight on the region and lots of free advertising. Selected every two years, the Montreal-based World Design Organization picks a different city as its “capital.” Some previous winners have been Seoul, Helsinki, Cape Town and Mexico City. San Diego and Tijuana decided to apply together as a binational region.

The festivities started Sunday night with a jazz concert, light show and chic party for Derome at the Rady Shell at Jacobs Park. There were only about 200 people at the event for a venue that can hold 3,500. The $85 million shell on the San Diego Bay opened in August.

“It’s a great city and an amazing venue. I have to say I’m pretty impressed by the design communities that came together,” Derome said at the event.
Design Lab Self-driving Nissan Toyota Ford Duke Stanford E-hmi

Design Lab Collaborates with Amgen to Explore Adoption of Medical Therapies

The Design Lab has recently embarked on an exciting collaboration with Amgen to explore the…

Back To Top